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Abstract

A connected graph G with diam(G) > ¢ is (-distance-balanced if |Wyy| =
|Wye| for every z,y € V(G) with dg(x,y) = ¢, where Wy, is the set of vertices
of G that are closer to z than to y. Miklavi¢ and Sparl conjectured that if
n is not very small with respect to k, then the generalized Petersen graph
GP(n, k) is not ¢-distance-balanced for any 1 < ¢ < diam(GP(n,k)). In the
seminal paper, the conjecture was verified for £ = 2. In this paper we prove
that the conjecture holds for £ = 3 and for k = 4.
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1 Introduction

Let G = (V(G), E(G)) be a connected graph and u,v € V(G). The set of vertices
that are closer to u than to v (with respect to the standard shortest-path distance
dg(u,v)) is denoted by W,,. When |W,,| = |W,,| holds, the vertices u and v are
called balanced, and when every pair of adjacent vertices is balanced, G is called
distance-balanced. Distance-balanced graphs were first considered in [11], the term
“distance-balanced” was coined in [13]. For a number of reasons, both theoretical
and applied, the distance-balanced graphs received a lot of attention, see [1,3-8,12,
15-17,20,22]. We should also mention in passing that distance-balanced graphs can
be equivalently described as the graphs whose Mostar index (see [2]) equals 0.

More generally, let ¢ € [diam(G)] = {1,2,...,diam(G)}, where diam(G) is the
diameter of G. Then G is called (-distance-balanced |9] if each pair of vertices
u,v € V(G) with dg(u,v) = ¢ is balanced. For a study of 2-distance-balanced
graphs see [10] and for several results of (-distance-balanced graphs see [14,21].

This paper is about the distance-balancedeness of the generalized Petersen graphs.
The interest in these graphs was already shown in [13]| where it was conjectured that
for any integer k& > 2, there exists a positive integer ny such that GP(n, k) is not
distance-balanced for every n > ng. The validity of the conjecture has been demon-
strated in [22|. Interest in the distance-balancedeness of the generalized Petersen
graphs continued in [18,21]. In [18] it was proved that GP(n, k) is diam(GP(n, k))-
distance-balanced as soon as n is large relative to k, more precisely, the following
theorem was proved.

Theorem 1. [18]| If n and k are integers, where 3 < k < n/2, and

8; k=3,
10; k=4,

= @; k is odd and k > 5,
k2. k s even and k > 6,

9
then GP(n, k) is diam(GP(n, k))-distance-balanced.
On the other hand, Miklavi¢ and épar posed the following:
Conjecture 2. [21] Let k > 2 be an integer and let

11; k=2,
ne =14 (k+1)% k odd,
k(k+2); k>4 even.

Then for any n > ny, the graph GP(n, k) is not (-distance-balanced for any 1 < £ <
diam(GP(n, k)). Moreover, ny, is the smallest integer with this property.
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In [21], Conjecture 2 was verified for & = 2. In this paper, we prove that
Conjecture 2 holds true for k£ = 3 and for k = 4 by establishing the following results.

Theorem 3. For any n > 16, the generalized Petersen graph GP(n,3) is not (-
distance-balanced for any 1 < ¢ < diam(GP(n,3)). Moreover, 16 is the smallest
integer with this property.

Theorem 4. For any n > 24, the generalized Petersen graph GP(n,4) is not (-
distance-balanced for any 1 < { < diam(GP(n,4)). Moreover, 24 is the smallest
integer with this property.

To prove these two theorems, it suffices to prove the first assertion of each of
them. With these results in hand, the facts that 16 is the smallest integer in Theo-
rem 3 and that 24 is the smallest integer in Theorem 4, follow by computer experi-
ments presented in |21, Table 1|.

Full proofs of Theorems 3 and 4 are very long and repetitive. We therefore present
in the next two sections only selected, representative cases. Complete proofs however
can be found in [19]. Their lengths suggest that it would be difficult to generalize
our approach to k£ > 4. We conclude the paper by suggesting a problem in Section 4.

To conclude the introduction recall that the generalized Petersen graph GP(n, k),
n>3,1<k<n/2 is defined by

V(GP(n,k)) =A{u;: i € Zn} U{v; : i € Zy,},
E(GP(n,k)) = {wuirr 2 1 € Zp} U{vvisg : 1 € Ly} U{wv; i € 2y}

2 Sketch proof of Theorem 3

As mentioned in the introduction, it suffices to prove that for any n > 16, the
generalized Petersen graph GP(n,3) is not (-distance-balanced for any 1 < ¢ <
diam(GP(n,3)). We split the argument into the cases ¢ = 1, { = 2, and 3 < { <
diam(GP(n, 3)) to be respectively covered by Propositions 5, 6, and 7.

Proposition 5. For any n > 16, the generalized Petersen graph GP(n,3) is not
1-distance-balanced.

Proof. Since dgp(ng)(uo,v0) = 1, it suffices to prove that |Wyow,| < [Wiguo|- We
divide the discussion into six cases based on n mod 6, and for transparency and
non-replication purposes, present only the first case in detail. Details for the other
five cases are given in [19].

Let n = 6m, where m > 3. By symmetry, it suffices to consider vertices u; and
v; where 1 <14 < 7. Then the following holds.

3



o If 1 <t <m, then d(up,us;) =2+t and d(vy, us) = 1+ t.
o If 1 <t <m, then d(up,vs) =1+t and d(vy, vs) = t.

(
(
e If 1 <t < m, then d(ug,us1) =3+t and d(vy, usr1) = 2+ t.
o If 0 <t < m, then d(ug,vsir1) =2+t and d(vg, v341) = 3 + t.
(
(

e If 0 <t < m, then d(ug,vs12) =3+t and d(vg, v340) = 4 + t.

) =
)
o If 1 <t < m, then d(ug,usio) =4+t and d(vg, ussso) = 3 + t.
) =
o d(ug,u;) =1 and d(vg, uy) = 2.
o d(ug,us) =2 and d(vg, uz) = 3.

In the above consideration, we have 2m + 2 vertices from W,,,, and 4m — 2 vertices
from Wyy,. Since we have considered only the vertices u; and v; with 1 <7 < 7
there are in total twice as many vertices, except that us,, and vs,, are considered
twice (and they lie in W, ). Since clearly uy € Wy, and vy € Wy, we conclude
that

Wawo| = 2(2m +2) + 1 = 4m + 5,
(Wl = 2(4m —2) +1 —2 = 8m — 5.

Because m > 3, we indeed have |W, w0 | < [Woguol-
The conclusions in the remaining cases are as follows:

o If n=6m+1, m >3, then |W,,,,| =4m + 3 and |W,,,| = 8m — 3.
o If n==06m+2, m>3, then |W,,,,| =4m + 4 and |W,,,| = 8m.

o If n=06m+3, m >3, then |Wy,,| =4m + 7 and |W,y,,| = 8m — 1.
o If n==6m+4, m> 3, then |W,,,,| =4m + 6 and |W,y,,| = 8m + 2.

e If n=06m+5, m>2 then |W,,,| =4m +5 and |W,,.,| = 8m + 3.

Note that if n = 6m + 2, m > 3, then Wiy | + [Wague| < |V(GP(n,3))|, the reason
is that d(ug, 3m—1)41) = m + 1 = d(vo, V3(m—1)+1). Anyhow, in each case we have
Wagvel < [Woguo |- O

Proposition 6. For any n > 16, the generalized Petersen graph GP(n,3) is not
2-distance-balanced.



Proof. Since dgp3)(uo,v—3) = 2, it suffices to prove that [Wyg,_,| < [Wy_u.|- We
divide the discussion into the six cases based on n mod 6, and for transparency and
non-replication purposes, present only the first case in detail. Details for the other
five cases are given in [19].

Firstly we consider vertices v_1,v_o,u_1,u_o.

2 and d(v_3,v_1) = 4.

d(uo,v-1) =

d(ug,v_2) = d(v_3,v_9) = 3.
d(ug,u_1) =1 and d(v_3,u_q) = 3.
d(ug, u—g) = d(v_3,u_g) = 2.

So u_1,v_1 € Wy, and no vertex of {v_q,v_o9,u_1,u_o} is in W,__.,.
Next we consider vertices v; where 0 < ¢ <n — 3 and u; where 1 < j <n — 3.
Let n = 6m where m > 3. Note that v_3 =v,_3and n —3 =6m — 3 = 3(2m — 1).

o If 0 <t <m—1, then d(ug,vs) = d(vem—3,v3t) = 1 + 1.
Ifm <t < 2m—1, then d(vgm—3, v3:) = 2m—1—t and d(ug, v3;) > d(Vem—3, V3t)-

o If 0 <t <m—1, then d(ug,v341) = 2+t and d(ug, v3141) < d(Vem—3, V3t+1)-
If m <t< 2m — 1, then d(UO, U3t+1) = d(U6m,3, U3t+1) =2m —t+ 2.

o If0 S t S m — 2, then d(UO, U3t+2) =34+t and d(uO,U3t+2) < d(UGm_g, U3t+2).
Ifm-—1 S t<2m— ]_, then d(UO,Ugt+2) = d(U6m_3,’U3t+2) =2m—1t+ 1.

o If 1 <t <m—1, then d(ug, ust) = d(Vem_3,ust) = 2 +t.
If m <t <2m—1, then d(vem—3,us:) = 2m —t and d(ug, ust) > d(Vem—3, Ust)-

o If 1 <t<m-— 1, then d(uo, U3t+1) = d(UGmfg,’U/gtJrl) =3+t
If m <t < 2m—1, then d(ven_3,ugr1) = 2m —t + 1 and d(ug, ugir1) >
d(UGm—37 U3t+1)-

o If1 S t S m — 2, then d(UO, U3t+2) = d(vﬁm_g,U3t+2) =441
Ifm—1<t<2m—1, then d(vgm—3,uzt+2) = 2m — t and d(ug, ugrr2) >
d(V6rm—3, Usty2)-

o d(ug,ur) =1, d(vgm_3,u1) =2m + 1, d(ug, us) = 2, d(vem—3, u2) = 2m.

Note that uy € Wiy, s and Ugym—3 € Wiy, sy, Combined with the above discussion
we get [ Wagven_s| = 2m+4 and |W, | = 4m—1. Because m > 3, we can conclude

that [Wigeg, 5| < [Weg_suol-
The conclusions in the remaining cases are as follows:

6m—3U0
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If n==6m+1, m >3, then |Wy,, .| =2m+4 and |W, .| =4m + 2.
o If n=>06m+2, m>3, then |W,,, .| =2m+ 3 and |W,_,,,| = 4m + 1.
o If n=6m+ 3, m >3, then |Wy,_,| =2m +6 and |W,_,,,| = 4m + 3.
o If n=6m+4, m>3, then |W,,, ,| =2m+4 and |W, ,,,| = 4m + 2.

o If n=06m+5,m>2 then |W,,, .| =2m+5 and |W, | = 4m + 5.

In each case we have |[Wio | < [Wo_suel- O

Proposition 7. For any n > 16, the generalized Petersen graph GP(n,3) is not
(-distance-balanced for any 3 < { < diam(GP(n,3)).

Proof. For a given fixed n, we set D = diam(GP(n, 3)).

For any 3 < ¢ < D, we first show that there exists v; such that d(ug,v;) = ¢,
where 6 < j <n/2. From [18] we recall that there exists j* such that d(uo, uj<) = D.

If n=6m (m >3)orn==6m+1(m > 3), then we know from [18] that
j*=3(m—1)+2and D = d(ug, u;+) = m-+3. Note that d(ug, v35+2) = s+ 3, where
2 <s<m-—1,and d(ug,vss) = s+ 1, where 2 < s < m.

Ifn=6m+2(m>3)orn=>6m+3 (m > 3), then from [18] we know that
j*=3m+1and D = d(up,u;~) = m + 3. Note that d(ug,vss11) = s+ 2, where
2 < s <m,and d(ug,vss) = s+ 1, where 2 < s < m.

If n =6m+4 (m > 3), then from [18] we know that j* = 3m + 2 and D =
d(ug, uj+) = m+4. Note that d(ug, v3s12) = s+3, where 2 < s < m, and d(ug, v3s) =
s+ 1, where 2 < s < m.

If n=6m+5 (m > 2), then (again by [18]) j* =3m + 1 and D = d(uo, uj) =
m + 3. Note that d(ug,vss11) = s+ 2, where 2 < s < m, and d(ug,vss) = s + 1,
where 2 < s < m.

From the above discussion, there exists j, where 6 < j < n/2, such that
d(ug,v;) = ¢ for any 3 < /¢ < D. Define the following sets of vertices:

Vi={u;: 1<i<j—1}U{y;: 1<i<j—1},

Vo=Aw: j+1<i<n—-1}U{y;: j+1<i<n-—1},
Wl S Wum}j U (Vvl U {U07U0,Uj,vj}),

Wvljuo = ijuo U (‘/1 U {U(), Vo, Uy, Uj})7
Wioyj = Wuovj U (‘/2 U {u07 Vo, Uj, Uj}>’
ijuo = Wi,uo U (Vo U {uo, vo, 1y, v5}).



Because 6 < j < n/2, we have |V, uOU | = Wi, J|and | Uu0|—| . Ju0| So
|VVH071]| | uov | + | uov | —2= | uov | + | uovn | —2 and
|WUjU0| | vu0|+| vu0|_2_| vu0|+| vn ]u0|_2'

In the following we will compute [W, , | and [W, | where 6 < j < n —6. The

computation is divided into six cases, and for transparency and non-replication
purposes, present only the first case in detail. Details for the other five cases are
given in [19].

The computation of |W,

| and |[W,.. ,, |, where s is odd and s > 5, is as follows.

UO'US US uo

o If 0 <t < s, then d(ug,vy) =1+t and d(vss, v3) = s — L.
If 0 < < = _1 , then d(ug, v3;) < d(vss, v3t).
If == < ¢ < s, then d(ug, v3;) > d(vss, V3t).

o If 0 <t < s, then d(ug,vsr1) =2+t and d(vss, vg41) = s — t + 3.
fo<t< %, then d(ug, v3y1) < d(vss, V3g11)-
If % <t <s, then d(uo, U3t+1) > d(U357 U3t+1).

o If 0 <t < s, then d(ug,v32) =3+t and d(vss, Vg40) = s — t + 2.
If 0 S t < 8;217 then d(UO,U3t+2) < d('Ugs, U3t+2).
If % <t < s, then d(ug, v3i2) > d(vss, Usii2)-

o If 1 <t <s, then d(ug,us) =2+t and d(vss, us) = s —t+ 1.
Ifl < t < =2, then d(uo, us) < d(vss, us).
If =1 < ¢ < s, then d(ug, us) > d(vss, ugy).

o If 1 <t < s, then d(ug,usr1) =3+t and d(vss, ugpr1) = s —t + 2.
If1<t< %, then d(ug, usiy1) < d(vss, Uggr1)-
If =1 <t <'s, then d(uo, uz+1) > d(vss, Uss1)-

o If 1 <t < s, then d(ug, us2) =4+t and d(vss, ugpyo) = s —t + 1.
f1<t< 8;237 then d(UQ,U3t+2) < d(Ugs, U3t+2).
If % <t <s, then d(uo, U3t+2) > d(UgS, U3t+2).

o d(ug,uy) =1, d(vss,u1) = s+ 2, d(up, uz) = 2, and d(vss, ug) = s + 1.

Note that KC € W, ... and vs, E Wy, .- Combined with the above discussion we
obtain [W, . | =3s— 3 and |V, e ol =3s— L.

The conclusions in the remaining cases are as follows:

o If s >4 and s is even, then |W, . | =3s and [W,, , | =3s+2.
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o If s> 3 and s is odd, then [W, . |=3s+1and |[W, . |=3s+3.
e If s >4 and s is even, then [W, | =3s—2and W, ., |=3s.
o If s > 5 and s is odd, then [W, . [=3s—1and |W, . |=3s+1
o If s >4 and s is even, then [W, . [=3s+2and W, . |=3s+4
o [Wh,|=Tand [WL,|=T.
o Wi, |=6and Wi, |=6
o W =9 and WL, = 0.
‘| uovg|—7and| vguo|—8.
o WL, =9 and (W[ = 10
When n > 17, from the above computation of [W, , | and [W, | where 6 <

j <n—06,forany 3 < /¢ < D, we know that there exists j where d(uo, vj) = ¢ and
6 < j < n/2such that [Wyg,,| < [Wy,y,l. O

3 Sketch proof of Theorem 4

As mentioned in the introduction, it suffices to prove that for any n > 24, the
generalized Petersen graph GP(n,4) is not (-distance-balanced for any 1 < ¢ <
diam(GP(n,4)). We split the argument into the cases £ =1, { =2, and 3 < ( <
diam(GP(n,4)) to be respectively covered by Propositions 8, 9, and 10.

Proposition 8. For any n > 24, the generalized Petersen graph GP(n,4) is not
1-distance-balanced.

Proof. Since dgp(na)(uo,vo) = 1, it suffices to prove that [Wygu| < [Wigul-
divide the discussion into eight cases based on n mod 8, and for transparency and
non-replication purposes, present only the first case in detail. Details for the other
seven cases are given in [19].

Let n = 8m, where m > 4. By symmetry, it suffices to consider vertices u; and
v; where 1 <14 < 7. Then the following holds.

e If 1 <t <m, then d(ug,vy) =1+t and d(vy,vy) = t.

e If 0 <t < m, then d(ug,vyr1) =2+t and d(vg, vgy1) = 3+ t.



o If 0 <t < m, then d(ug,vsso) =3+t and d(vg, vars0) = 4 + t.
o If 0 <t < m, then d(up, var13) = 3+t and d(vy, vary3) = 4 + 1.
o If 1 <t <m, then d(up,usy) =2+t and d(vy,uy) =1+ 1.

o If 1 <t < m,then d(ug,usys1) =3+t and d(vg, ugey1) =2 + .
e If 1 <t < m, then d(ug,ugy2) =4+t and d(vy, ugy2) = 3 + t.
o If 1 <t < m, then d(ug,ug3) =4+t and d(vy, ugy3) = 3 + t.

o d(ug,ur) = 1, d(vo,u1) = 2, d(ug,uz) = 2, d(vg,us) = 3, d(ug,us) = 3, and
d(’UQ,Ug) = 3.

Note that vy € Wy, and vy € Wy,,,. Combined with the above discussion we
arrive at |Wyop| = 2(3m+2) +1 = 6m+5 and |W,y,| = 2(5m —5) +3 = 10m — 7.
Because m > 4, we can conclude that |Wi v | < [Waguel-

The conclusions in the remaining cases are as follows:

o If n=8m+ 1, where m > 3, then |Wy,,,| = 6m + 3 and |Wy,u,| = 10m — 5.
e If n =8m + 2, where m > 3, then |W,,,| = 6m + 4 and |W,,,| = 10m — 2.
e If n =8m + 3, where m > 3, then |W,,,,| = 6m + 5 and |W,,,| = 10m — 1.
o If n =8m + 4, where m > 3, then |W,,,,| = 6m + 8 and |Wy,y,| = 10m — 2.
o If n =8m + 5, where m > 3, then |Wy..,| = 6m + 7 and |Wy,y,| = 10m + 1.
e If n =8m + 6, where m > 3, then |Wy,,| = 6m + 6 and |W,,,| = 10m + 2.

o If n=8m+ 7, where m > 3, then |Wy,,| = 6m + 7 and |W,,,,,| = 10m + 3.

In each case we have |Wy 0| < [Wague |- O

Proposition 9. For any n > 24, the generalized Petersen graph GP(n,4) is not
2-distance-balanced.

Proof. Since dgp(n,a)(uo, v—4) = 2, it suffices to prove that [Wy.,_,| < |Wy_u,|. We
divide the discussion into the eight cases based on n mod 8, and for transparency
and non-replication purposes, present only the first case in detail. Details for the
other seven cases are given in [19].

Firstly we consider vertices v_q,v_9,V_3,U_1,U_3, U_3:



2 and d(v_4,v_1) = 4,

d Ug, V-1
Up, V-2

and d(v_q,v_9) = 4,

1 and d(U 4, U_ 1) 3

Ug, U-1

d

ug, u_9) = 2 and d(v_4,u_2)

( ) =
( )=

d(ug, v_3) = d(v_4,v_3) = 3,
( )=
( ) 3,
(

d(ug,u_3) =3 and d(v_g,u_3) = 2.

Next we consider vertices v;, 0 < ¢ <n —4, and u;, 1 <j<n—4. Let n =8m,
m > 4. Note that n —4 =8m —4 = 4(2m — 1).

If0<t<m-—1, then d(ug,vy) = d(vgm—4,v4) = 1 + 1.
Ifm <t <2m—1, then d(vgm—_4,v4) = 2m—t—1 and d(ug, va) > d(Vsm—a, Vaz).

If 0 <t<m-— ]_, then d(UO, U4t+1) =2+tand d(U,O,U4t+1> < d(Usm_4, ’U4t+1).
If m <t <2m—1, then d(ug, vasy1) = d(Vgm—a, Vars1) = 2m — t + 2.

If 0 S t S m — ]_, then d(UO, ’U4t+2) =3+t and d(UQ,U4t+2> < d(Ugm_4, ’U4t+2).
If m <t <2m—1, then d(ug, Vasi2) = d(Vgm—4, Varro) = 2m — t + 2.

If 0 S t S m — 2, then d(UO, U4t+3) =34+t and d(UQ, U4t+3> < d(Ugm_4, U4t+3).
Ifm—1<t<2m—1, then d(ug, var+3) = d(Vsm—4, Varss3) = 2m — t + 1.

If1 S t S m — ]., then d(UO, U4t) = d(Ugm_4,U4t> =2+t
Ifm <t <2m—1, then d(vgm_4,uss) = 2m — t and d(ug, ) > d(Vgm—_4, Uaz)-

If 1 <t <m-—1, then d(ug, us1) = d(Vgm_4a, Ugrr1) = 3+ t.
If m <t < 2m—1, then d(vgp_4,user1) = 2m —t + 1 and d(ug, ugey1) >
d(USm—47 U4t+1)-

If1 S t S m — 2, then d(UO, U,4t+2) = d(Ugm_4, U4t+2) =4+t
Ifm—1<t<2m—1, then d(vgm_4,Usr2) = 2m —t + 1 and d(ug, ugs2) >
d(USm—47 U4t+2)-

If1 S t S m — 2, then d(UO, U4t+3) = d(Ugm_4, U4t+3) =4+t
Ifm—1<t<2m—1, then d(vgm_4,usr3) = 2m — t and d(ug, ugess) >
d(Usm—4, U4t+3)-

d(uo,ul) = ]_, d(Ugm_4,U1) =2m + 17 d(U(),UQ) = 2, d(’Ugm_4,U2) =2m + 17
d(ug,uz) = 3, and d(vg,,_4,us) = 2m.
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Note that uy € Wiy, , and vgy,—q € Wy, .- Combined with the above discussion
we arrive at |[Wyve,, 4| = 3m + 7 and |W, 4| = dm. Because m > 4 we may
conclude that |Wiyue o] < [Wagn auol-

The conclusions in the remaining cases are as follows:

o If n=8m+ 1, where m > 3, then |Wy,,, ,| =3m+ 7 and |W,_,.,| = 5m + 3.
e If n =8m+ 2, where m > 3, then |W,,_,| = 3m + 6 and |W,_,.,| = 5m + 2.
o If n =8m + 3 where m > 3, then |W,,,_,| =3m+ 7 and |W,_,,,| = 5m + 3.
o If n =8m + 4, where m > 3, then Wy, ,| =3m + 9 and |W,_,.,| = 5m + 4.
e If n =8m+ 5, where m > 3, then |W,,_,| =3m+ 7 and |W,_,.,| = 5m + 3.
e If n =8m + 6, where m > 3, then |W,,_,| = 3m + 8 and |W,_,.,| = 5m + 6.

o If n=8m+ 7, where m > 3, then |Wy,,,_,| = 3m + 8 and |W,,_,.,| = 5m + 6.

In each case we have |Wy..,_,| < |W,_,u| as required. O

Proposition 10. For any n > 24, the generalized Petersen graph GP(n,4) is not
(-distance-balanced for any 3 < { < diam(GP(n,4)).

Proof. For a given fixed n, we set D = diam(GP(n,4)).

For any 3 < ¢ < D, we first show that there exists v; such that d(ug,v;) = ¢
where 8 < j < n/2. From [18] we recall that there exists j* such that d(uo, uj<) = D.

If n = 8m, where m > 4, or n = 8m + 1, where m > 3, then from [18] we know
that j* =4(m — 1)+ 2 and D = d(uo, uj~) = m + 3. Note that d(ug, v4s2) = 5+ 3,
where 2 < s <m — 1, and d(ug, v4s) = s+ 1, where 2 < s < m.

If n = 8m + 2, where m > 3, or n = 8m + 3, where m > 3, then from [18| we
know that j* = 4m + 1 and D = d(ug, u;«) = m + 3. Note that d(ug, v4s+1) = 5 + 2,
where 3 < s <m, and d(ug,v4s) = s+ 1, where 2 < s < m.

If n = 8m + 4, where m > 3, or n = 8m + 5, where m > 3, then from [18| we
know that j* = 4m + 2 and D = d(ug, u;+) = m + 4. Note that d(ug, v4s12) = s+ 3,
where 2 < s < m, and d(ug, v45) = s+ 1, where 2 < s < m.

If n = 8m + 6, where m > 3, then from [18] we know that j* = 4m + 3 and
D = d(ug,uj») = m+ 4. Note that d(ug,vsss3) = s+ 3, where 2 < s < m, and
d(ug,v4s) = s+ 1, where 2 < s < m.

If n = 8m + 7, where m > 3, then from [18] we know that j* = 4m + 2 and
D = d(up,uj-) = m + 4. Note that d(ug, vss+2) = s+ 3, where 2 < s < m, and
d(ug,v45) = s+ 1, where 2 < s < m.
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By the above discussion, there exists j, where 8 < j < n/2, such that d(uo,v,) =
¢ for any 3 < ¢ < D. Define the following sets of vertices:

Vi={u: 1<i<j—1}U{y;: 1 <i<j—1},
Vo=Aw;: j+41<i<n—-1}U{y;: j+1<i<n-—1},
Wl y :Wuovju(‘/lu{umv&uﬁvj})

Wvljuo ”U]UO (Vv1 U {u07007uj7vj})’
Wio'uj UOUJ ( U {U(), Vo, Uy, vj})7
nguo v]uo ( U {U(), Vo, Uy, Uj})

Because 8 < j < n/2, we have |I¥, UOU | = Wi, | and [W7 2wl =W, qu\. So
‘Wuov]|_| u0v|+| uov‘_2_’ u0v|+’ uov ‘_2 and
‘iju0|:| vu0‘+| vuo‘_2_’ vu0|+’W1 ]uo‘_Q'

In the following we will compute |W, Dv | and W, ' uo| Where 8 < j <n —8. The

computation is divided into eight cases, and for transparency and non-replication
purposes, present only the first case in detail. Details for the other seven cases are
given in [19].

The computation of |W,

| and |W, ., |, where s > 5 is odd is as follows.

UO'U4 'U4sU0

e fO<t<s, then d(ug,vet) = 1+t and d(vys,v4:) = s — t.
If 0 <t < %=, then d(ug, vy) < d(vys, Vae)-
If =2 1 <t < s, then d(ug, v4) > d(vas, Vag)-

o If 0 <t < s, then d(ug,vgs1) =2+t and d(vgs, Vg401) = s — t + 3.
If 0 <t< %7 then d(UO,’U4t+1) < d(’U4S, U4t+1).
If % <t <s, then d(UQ, ’U4t+1) > d(’U45,U4t+1).

o If 0 <t < s, then d(ug,vas2) =3+t and d(vygs, Vggi0) = s — t + 3.
fo<t< 85—17 then d(UQ,U4t+2) < d(U4s7 U4t+2).
If % <t<s, then d(UO, U4t+2) > d(U45,’U4t+2).

o If0 <t < s, then d(ug, var3) = 3+t and d(vgs, Vgpy3) = s —t + 2.
If O < t < 5=, then d(ug, vapy3) < d(Vgs, Vagr3)-
If == < t < S, then d(U,Q, U4t+3) > d(U4S, U4t+3)

o If 1 <t <s, then d(ug,ug) = 2+t and d(vys, uy) = s —t + 1.
If 1 <t < 3=, then d(ug, ug) < d(vas, Uag)-
If ﬂ <t § s, then d(ug, ug) > d(vas, ugy).
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o If1 <t <s, then d(ug, uger1) = 3+t and d(vygs, Uggr1) = s —t+ 2.
If 1 <t < 3=, then d(ug, ugs1) < d(Vgs, Uggr1)-
If =+ <t < s, then d(ug, uges1) > d(vas, Ugpy1)-

o If 1 <t < s, then d(ugp, ugi2) =4+t and d(vys, Ugpio) = s —t + 2.
If1 § t é %, then d(UQ,U4t+2) < d(’U48, U4t+2).
If =4 <t <'s, then d(ug, usy2) > d(vas, Ugri2)-

o If 1<t <s, then d(ug, ugers) = 4+t and d(vygs, uggaz) = s —t+ 1.
If 1 <t < %2, then d(ug, ugy3) < d(vys, Usrys).
If 5= 3 <t < s, then d(ug, uggr3) > d(vas, Ugrr3)-

o d(ug,ur) =1, d(vys, u1) = s+ 2, d(ug, uz) = 2, d(vygs, us) = s+ 2, d(ug, uz) = 3,
and d(vys,u3) = s+ 1.

Note that y e W, . and vy € I/Vvl4 w- Combined with the above discussion we
arrive at |[W, . | =4s—3 and |[W,, | =4s— 1.

The conclusions in the remaining cases are as follows:

o If s >4 and s is even, then |[W, , | =4s—1and [W, | =4s+1.

e If s> 3 and s is odd, then [W, , |=4s+1and |W,, . |=4s+3.
e If s >4 and s is even, then W, |=4s—3and [W,, , [=4s—1
e If s >5and s is odd, then [W, . [=4s—1and |W, . |=4s+1
o If s >4 and s is even, then [W, | =4s+1and W, . |=4s+3.
e If s> 5and s is odd, then [W, . |=4s+1and |W,, . |=4s+3.
o If s >4 and s is even, then [W, [ =4s+1and |[W,, . [=4s+3.
o (Wil =8and WL, |=5.

o Wy .,/ =11and [W; . |=10.

o WL, |=10and WL  |=10,

o W, ., =10and [W; . |=11.

o W, ,.l=12and W, . |=13.

o WL, |=14and W |=15.

'U15UO
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When n > 26, from the above computation of [W, , | and [W, |, where 8 <
j <n—3§, for any 3 < ¢ < D we know that there exists j where d(ug,v;) = ¢ and
8 < j < n/2 such that [Wy,,| < [Wy,u|. When n = 25, we have d(ug,vs) = 3,
d(ug,v12) = 4, d(ug,v11) = 5, and D(GP(25,4)) = 6. From the above computation

of [Wyu,| and [W, |, we know that [Wig,,| < [W,,u,| for any j € {8,11,12}. O

0Vj

4 Concluding remarks

In this paper, we prove that GP(n,3) is not (-distance-balanced for n > 16 and
1 < ¢ < diam(GP(n,3)). We also prove that GP(n,4) is not (-distance-balanced
for n > 24 and 1 < ¢ < diam(GP(n,4)). Earlier it was proved in [21] that GP(n,2)
is not (-distance-balanced for n > 11 and 1 < ¢ < diam(GP(n,2)). As already
mentioned, to investigate Conjecture 2 for £k > 5, most likely a new approach is
needed.

Having in mind Theorem 1, Conjecture 2, and the two main results of this paper,
we propose the following problem.

Problem 11. (1) Let k > 5 be odd and let @ < n < (k+ 1)% Determine
whether GP(n, k) is (-distance-balanced for 1 < ¢ < diam(GP(n,k)).

(2) Let k > 6 be even and let %2 <n < k(k+ 2). Determine whether GP(n,k)
is (-distance-balanced for 1 < { < diam(GP(n,k)).
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