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Abstract

A connected graph G with diam(G) ≥ ℓ is ℓ-distance-balanced if |Wxy| =
|Wyx| for every x, y ∈ V (G) with dG(x, y) = ℓ, where Wxy is the set of vertices
of G that are closer to x than to y. Miklavi£ and �parl conjectured that if
n is not very small with respect to k, then the generalized Petersen graph
GP (n, k) is not ℓ-distance-balanced for any 1 ≤ ℓ < diam(GP (n, k)). In the
seminal paper, the conjecture was veri�ed for k = 2. In this paper we prove
that the conjecture holds for k = 3 and for k = 4.
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1 Introduction

Let G = (V (G), E(G)) be a connected graph and u, v ∈ V (G). The set of vertices
that are closer to u than to v (with respect to the standard shortest-path distance
dG(u, v)) is denoted by Wuv. When |Wuv| = |Wvu| holds, the vertices u and v are
called balanced, and when every pair of adjacent vertices is balanced, G is called
distance-balanced. Distance-balanced graphs were �rst considered in [11], the term
�distance-balanced� was coined in [13]. For a number of reasons, both theoretical
and applied, the distance-balanced graphs received a lot of attention, see [1,3�8,12,
15�17,20,22]. We should also mention in passing that distance-balanced graphs can
be equivalently described as the graphs whose Mostar index (see [2]) equals 0.

More generally, let ℓ ∈ [diam(G)] = {1, 2, . . . , diam(G)}, where diam(G) is the
diameter of G. Then G is called ℓ-distance-balanced [9] if each pair of vertices
u, v ∈ V (G) with dG(u, v) = ℓ is balanced. For a study of 2-distance-balanced
graphs see [10] and for several results of ℓ-distance-balanced graphs see [14, 21].

This paper is about the distance-balancedeness of the generalized Petersen graphs.
The interest in these graphs was already shown in [13] where it was conjectured that
for any integer k ≥ 2, there exists a positive integer n0 such that GP (n, k) is not
distance-balanced for every n ≥ n0. The validity of the conjecture has been demon-
strated in [22]. Interest in the distance-balancedeness of the generalized Petersen
graphs continued in [18,21]. In [18] it was proved that GP (n, k) is diam(GP (n, k))-
distance-balanced as soon as n is large relative to k, more precisely, the following
theorem was proved.

Theorem 1. [18] If n and k are integers, where 3 ≤ k < n/2, and

n ≥


8; k = 3,
10; k = 4,
k(k+1)

2
; k is odd and k ≥ 5,

k2

2
; k is even and k ≥ 6,

then GP (n, k) is diam(GP (n, k))-distance-balanced.

On the other hand, Miklavi£ and �par posed the following:

Conjecture 2. [21] Let k ≥ 2 be an integer and let

nk =


11; k = 2,
(k + 1)2; k odd,
k(k + 2); k ≥ 4 even.

Then for any n > nk, the graph GP (n, k) is not ℓ-distance-balanced for any 1 ≤ ℓ <
diam(GP (n, k)). Moreover, nk is the smallest integer with this property.
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In [21], Conjecture 2 was veri�ed for k = 2. In this paper, we prove that
Conjecture 2 holds true for k = 3 and for k = 4 by establishing the following results.

Theorem 3. For any n > 16, the generalized Petersen graph GP (n, 3) is not ℓ-
distance-balanced for any 1 ≤ ℓ < diam(GP (n, 3)). Moreover, 16 is the smallest
integer with this property.

Theorem 4. For any n > 24, the generalized Petersen graph GP (n, 4) is not ℓ-
distance-balanced for any 1 ≤ ℓ < diam(GP (n, 4)). Moreover, 24 is the smallest
integer with this property.

To prove these two theorems, it su�ces to prove the �rst assertion of each of
them. With these results in hand, the facts that 16 is the smallest integer in Theo-
rem 3 and that 24 is the smallest integer in Theorem 4, follow by computer experi-
ments presented in [21, Table 1].

Full proofs of Theorems 3 and 4 are very long and repetitive. We therefore present
in the next two sections only selected, representative cases. Complete proofs however
can be found in [19]. Their lengths suggest that it would be di�cult to generalize
our approach to k > 4. We conclude the paper by suggesting a problem in Section 4.

To conclude the introduction recall that the generalized Petersen graph GP (n, k),
n ≥ 3, 1 ≤ k < n/2, is de�ned by

V (GP (n, k)) = {ui : i ∈ Zn} ∪ {vi : i ∈ Zn},
E(GP (n, k)) = {uiui+1 : i ∈ Zn} ∪ {vivi+k : i ∈ Zn} ∪ {uivi : i ∈ Zn}.

2 Sketch proof of Theorem 3

As mentioned in the introduction, it su�ces to prove that for any n > 16, the
generalized Petersen graph GP (n, 3) is not ℓ-distance-balanced for any 1 ≤ ℓ <
diam(GP (n, 3)). We split the argument into the cases ℓ = 1, ℓ = 2, and 3 ≤ ℓ <
diam(GP (n, 3)) to be respectively covered by Propositions 5, 6, and 7.

Proposition 5. For any n > 16, the generalized Petersen graph GP (n, 3) is not
1-distance-balanced.

Proof. Since dGP (n,3)(u0, v0) = 1, it su�ces to prove that |Wu0v0| < |Wv0u0|. We
divide the discussion into six cases based on n mod 6, and for transparency and
non-replication purposes, present only the �rst case in detail. Details for the other
�ve cases are given in [19].

Let n = 6m, where m ≥ 3. By symmetry, it su�ces to consider vertices ui and
vi where 1 ≤ i ≤ n

2
. Then the following holds.
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� If 1 ≤ t ≤ m, then d(u0, u3t) = 2 + t and d(v0, u3t) = 1 + t.

� If 1 ≤ t ≤ m, then d(u0, v3t) = 1 + t and d(v0, v3t) = t.

� If 1 ≤ t < m, then d(u0, u3t+1) = 3 + t and d(v0, u3t+1) = 2 + t.

� If 0 ≤ t < m, then d(u0, v3t+1) = 2 + t and d(v0, v3t+1) = 3 + t.

� If 1 ≤ t < m, then d(u0, u3t+2) = 4 + t and d(v0, u3t+2) = 3 + t.

� If 0 ≤ t < m, then d(u0, v3t+2) = 3 + t and d(v0, v3t+2) = 4 + t.

� d(u0, u1) = 1 and d(v0, u1) = 2.

� d(u0, u2) = 2 and d(v0, u2) = 3.

In the above consideration, we have 2m+2 vertices from Wu0v0 and 4m− 2 vertices
from Wv0u0 . Since we have considered only the vertices ui and vi with 1 ≤ i ≤ n

2
,

there are in total twice as many vertices, except that u3m and v3m are considered
twice (and they lie in Wv0u0). Since clearly u0 ∈ Wu0v0 and v0 ∈ Wv0u0 , we conclude
that

|Wu0v0| = 2(2m+ 2) + 1 = 4m+ 5,

|Wv0u0| = 2(4m− 2) + 1− 2 = 8m− 5.

Because m ≥ 3, we indeed have |Wu0v0| < |Wv0u0|.
The conclusions in the remaining cases are as follows:

� If n = 6m+ 1, m ≥ 3, then |Wu0v0| = 4m+ 3 and |Wv0u0| = 8m− 3.

� If n = 6m+ 2, m ≥ 3, then |Wu0v0| = 4m+ 4 and |Wv0u0| = 8m.

� If n = 6m+ 3, m ≥ 3, then |Wu0v0| = 4m+ 7 and |Wv0u0| = 8m− 1.

� If n = 6m+ 4, m ≥ 3, then |Wu0v0| = 4m+ 6 and |Wv0u0| = 8m+ 2.

� If n = 6m+ 5, m ≥ 2, then |Wu0v0| = 4m+ 5 and |Wv0u0| = 8m+ 3.

Note that if n = 6m+ 2, m ≥ 3, then |Wu0v0|+ |Wv0u0| < |V (GP (n, 3))|, the reason
is that d(u0, v3(m−1)+1) = m + 1 = d(v0, v3(m−1)+1). Anyhow, in each case we have
|Wu0v0| < |Wv0u0|.

Proposition 6. For any n > 16, the generalized Petersen graph GP (n, 3) is not
2-distance-balanced.
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Proof. Since dGP (n,3)(u0, v−3) = 2, it su�ces to prove that |Wu0v−3 | < |Wv−3u0|. We
divide the discussion into the six cases based on n mod 6, and for transparency and
non-replication purposes, present only the �rst case in detail. Details for the other
�ve cases are given in [19].

Firstly we consider vertices v−1, v−2, u−1, u−2.

� d(u0, v−1) = 2 and d(v−3, v−1) = 4.

� d(u0, v−2) = d(v−3, v−2) = 3.

� d(u0, u−1) = 1 and d(v−3, u−1) = 3.

� d(u0, u−2) = d(v−3, u−2) = 2.

So u−1, v−1 ∈ Wu0v−3 and no vertex of {v−1, v−2, u−1, u−2} is in Wv−3u0 .
Next we consider vertices vi where 0 ≤ i < n − 3 and uj where 1 ≤ j ≤ n − 3.

Let n = 6m where m ≥ 3. Note that v−3 = vn−3 and n− 3 = 6m− 3 = 3(2m− 1).

� If 0 ≤ t ≤ m− 1, then d(u0, v3t) = d(v6m−3, v3t) = 1 + t.
Ifm ≤ t < 2m−1, then d(v6m−3, v3t) = 2m−1−t and d(u0, v3t) > d(v6m−3, v3t).

� If 0 ≤ t ≤ m− 1, then d(u0, v3t+1) = 2 + t and d(u0, v3t+1) < d(v6m−3, v3t+1).
If m ≤ t < 2m− 1, then d(u0, v3t+1) = d(v6m−3, v3t+1) = 2m− t+ 2.

� If 0 ≤ t ≤ m− 2, then d(u0, v3t+2) = 3 + t and d(u0, v3t+2) < d(v6m−3, v3t+2).
If m− 1 ≤ t < 2m− 1, then d(u0, v3t+2) = d(v6m−3, v3t+2) = 2m− t+ 1.

� If 1 ≤ t ≤ m− 1, then d(u0, u3t) = d(v6m−3, u3t) = 2 + t.
If m ≤ t ≤ 2m− 1, then d(v6m−3, u3t) = 2m− t and d(u0, u3t) > d(v6m−3, u3t).

� If 1 ≤ t ≤ m− 1, then d(u0, u3t+1) = d(v6m−3, u3t+1) = 3 + t.
If m ≤ t < 2m − 1, then d(v6m−3, u3t+1) = 2m − t + 1 and d(u0, u3t+1) >
d(v6m−3, u3t+1).

� If 1 ≤ t ≤ m− 2, then d(u0, u3t+2) = d(v6m−3, u3t+2) = 4 + t.
If m − 1 ≤ t < 2m − 1, then d(v6m−3, u3t+2) = 2m − t and d(u0, u3t+2) >
d(v6m−3, u3t+2).

� d(u0, u1) = 1, d(v6m−3, u1) = 2m+ 1, d(u0, u2) = 2, d(v6m−3, u2) = 2m.

Note that u0 ∈ Wu0v6m−3 and v6m−3 ∈ Wv6m−3u0 . Combined with the above discussion
we get |Wu0v6m−3| = 2m+4 and |Wv6m−3u0| = 4m−1. Becausem ≥ 3, we can conclude
that |Wu0v6m−3| < |Wv6m−3u0|.

The conclusions in the remaining cases are as follows:
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� If n = 6m+ 1, m ≥ 3, then |Wu0v−3 | = 2m+ 4 and |Wv−3u0| = 4m+ 2.

� If n = 6m+ 2, m ≥ 3, then |Wu0v−3| = 2m+ 3 and |Wv−3u0| = 4m+ 1.

� If n = 6m+ 3, m ≥ 3, then |Wu0v−3| = 2m+ 6 and |Wv−3u0| = 4m+ 3.

� If n = 6m+ 4, m ≥ 3, then |Wu0v−3| = 2m+ 4 and |Wv−3u0| = 4m+ 2.

� If n = 6m+ 5, m ≥ 2, then |Wu0v−3| = 2m+ 5 and |Wv−3u0| = 4m+ 5.

In each case we have |Wu0v−3| < |Wv−3u0|.

Proposition 7. For any n > 16, the generalized Petersen graph GP (n, 3) is not
ℓ-distance-balanced for any 3 ≤ ℓ < diam(GP (n, 3)).

Proof. For a given �xed n, we set D = diam(GP (n, 3)).
For any 3 ≤ ℓ < D, we �rst show that there exists vj such that d(u0, vj) = ℓ,

where 6 ≤ j ≤ n/2. From [18] we recall that there exists j∗ such that d(u0, uj∗) = D.
If n = 6m (m ≥ 3) or n = 6m + 1 (m ≥ 3), then we know from [18] that

j∗ = 3(m−1)+2 and D = d(u0, uj∗) = m+3. Note that d(u0, v3s+2) = s+3, where
2 ≤ s ≤ m− 1, and d(u0, v3s) = s+ 1, where 2 ≤ s ≤ m.

If n = 6m + 2 (m ≥ 3) or n = 6m + 3 (m ≥ 3), then from [18] we know that
j∗ = 3m + 1 and D = d(u0, uj∗) = m + 3. Note that d(u0, v3s+1) = s + 2, where
2 ≤ s ≤ m, and d(u0, v3s) = s+ 1, where 2 ≤ s ≤ m.

If n = 6m + 4 (m ≥ 3), then from [18] we know that j∗ = 3m + 2 and D =
d(u0, uj∗) = m+4. Note that d(u0, v3s+2) = s+3, where 2 ≤ s ≤ m, and d(u0, v3s) =
s+ 1, where 2 ≤ s ≤ m.

If n = 6m + 5 (m ≥ 2), then (again by [18]) j∗ = 3m + 1 and D = d(u0, uj∗) =
m + 3. Note that d(u0, v3s+1) = s + 2, where 2 ≤ s ≤ m, and d(u0, v3s) = s + 1,
where 2 ≤ s ≤ m.

From the above discussion, there exists j, where 6 ≤ j ≤ n/2, such that
d(u0, vj) = ℓ for any 3 ≤ ℓ < D. De�ne the following sets of vertices:

V1 = {ui : 1 ≤ i ≤ j − 1} ∪ {vi : 1 ≤ i ≤ j − 1},
V2 = {ui : j + 1 ≤ i ≤ n− 1} ∪ {vi : j + 1 ≤ i ≤ n− 1},

W 1
u0vj

= Wu0vj ∪ (V1 ∪ {u0, v0, uj, vj}),
W 1

vju0
= Wvju0 ∪ (V1 ∪ {u0, v0, uj, vj}),

W 2
u0vj

= Wu0vj ∪ (V2 ∪ {u0, v0, uj, vj}),
W 2

vju0
= Wvju0 ∪ (V2 ∪ {u0, v0, uj, vj}).
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Because 6 ≤ j ≤ n/2, we have |W 2
u0vj

| = |W 1
u0vn−j

| and |W 2
vju0

| = |W 1
vn−ju0

|. So

|Wu0vj | = |W 1
u0vj

|+ |W 2
u0vj

| − 2 = |W 1
u0vj

|+ |W 1
u0vn−j

| − 2 and

|Wvju0| = |W 1
vju0

|+ |W 2
vju0

| − 2 = |W 1
vju0

|+ |W 1
vn−ju0

| − 2.

In the following we will compute |W 1
u0vj

| and |W 1
vju0

| where 6 ≤ j ≤ n − 6. The
computation is divided into six cases, and for transparency and non-replication
purposes, present only the �rst case in detail. Details for the other �ve cases are
given in [19].

The computation of |W 1
u0v3s

| and |W 1
v3su0

|, where s is odd and s ≥ 5, is as follows.

� If 0 ≤ t < s, then d(u0, v3t) = 1 + t and d(v3s, v3t) = s− t.
If 0 ≤ t < s−1

2
, then d(u0, v3t) < d(v3s, v3t).

If s−1
2

< t < s, then d(u0, v3t) > d(v3s, v3t).

� If 0 ≤ t < s, then d(u0, v3t+1) = 2 + t and d(v3s, v3t+1) = s− t+ 3.
If 0 ≤ t < s+1

2
, then d(u0, v3t+1) < d(v3s, v3t+1).

If s+1
2

< t < s, then d(u0, v3t+1) > d(v3s, v3t+1).

� If 0 ≤ t < s, then d(u0, v3t+2) = 3 + t and d(v3s, v3t+2) = s− t+ 2.
If 0 ≤ t < s−1

2
, then d(u0, v3t+2) < d(v3s, v3t+2).

If s−1
2

< t < s, then d(u0, v3t+2) > d(v3s, v3t+2).

� If 1 ≤ t ≤ s, then d(u0, u3t) = 2 + t and d(v3s, u3t) = s− t+ 1.
If 1 ≤ t < s−1

2
, then d(u0, u3t) < d(v3s, u3t).

If s−1
2

< t ≤ s, then d(u0, u3t) > d(v3s, u3t).

� If 1 ≤ t < s, then d(u0, u3t+1) = 3 + t and d(v3s, u3t+1) = s− t+ 2.
If 1 ≤ t < s−1

2
, then d(u0, u3t+1) < d(v3s, u3t+1).

If s−1
2

< t < s, then d(u0, u3t+1) > d(v3s, u3t+1).

� If 1 ≤ t < s, then d(u0, u3t+2) = 4 + t and d(v3s, u3t+2) = s− t+ 1.
If 1 ≤ t < s−3

2
, then d(u0, u3t+2) < d(v3s, u3t+2).

If s−3
2

< t < s, then d(u0, u3t+2) > d(v3s, u3t+2).

� d(u0, u1) = 1, d(v3s, u1) = s+ 2, d(u0, u2) = 2, and d(v3s, u2) = s+ 1.

Note that u0 ∈ W 1
u0v3s

and v3s ∈ W 1
v3su0

. Combined with the above discussion we
obtain |W 1

u0v3s
| = 3s− 3 and |W 1

v3su0
| = 3s− 1.

The conclusions in the remaining cases are as follows:

� If s ≥ 4 and s is even, then |W 1
u0v3s

| = 3s and |W 1
v3su0

| = 3s+ 2.
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� If s ≥ 3 and s is odd, then |W 1
u0v3s+1

| = 3s+ 1 and |W 1
v3s+1u0

| = 3s+ 3.

� If s ≥ 4 and s is even, then |W 1
u0v3s+1

| = 3s− 2 and |W 1
v3s+1u0

| = 3s.

� If s ≥ 5 and s is odd, then |W 1
u0v3s+2

| = 3s− 1 and |W 1
v3s+2u0

| = 3s+ 1.

� If s ≥ 4 and s is even, then |W 1
u0v3s+2

| = 3s+ 2 and |W 1
v3s+2u0

| = 3s+ 4.

� |W 1
u0v6

| = 7 and |W 1
v6u0

| = 7.

� |W 1
u0v7

| = 6 and |W 1
v7u0

| = 6.

� |W 1
u0v8

| = 9 and |W 1
v8u0

| = 9.

� |W 1
u0v9

| = 7 and |W 1
v9u0

| = 8.

� |W 1
u0v11

| = 9 and |W 1
v11u0

| = 10.

When n ≥ 17, from the above computation of |W 1
u0vj

| and |W 1
vju0

| where 6 ≤
j ≤ n − 6, for any 3 ≤ ℓ < D, we know that there exists j where d(u0, vj) = ℓ and
6 ≤ j ≤ n/2 such that |Wu0vj | < |Wvju0|.

3 Sketch proof of Theorem 4

As mentioned in the introduction, it su�ces to prove that for any n > 24, the
generalized Petersen graph GP (n, 4) is not ℓ-distance-balanced for any 1 ≤ ℓ <
diam(GP (n, 4)). We split the argument into the cases ℓ = 1, ℓ = 2, and 3 ≤ ℓ <
diam(GP (n, 4)) to be respectively covered by Propositions 8, 9, and 10.

Proposition 8. For any n > 24, the generalized Petersen graph GP (n, 4) is not
1-distance-balanced.

Proof. Since dGP (n,4)(u0, v0) = 1, it su�ces to prove that |Wu0v0| < |Wv0u0 |. We
divide the discussion into eight cases based on n mod 8, and for transparency and
non-replication purposes, present only the �rst case in detail. Details for the other
seven cases are given in [19].

Let n = 8m, where m ≥ 4. By symmetry, it su�ces to consider vertices ui and
vi where 1 ≤ i ≤ n

2
. Then the following holds.

� If 1 ≤ t ≤ m, then d(u0, v4t) = 1 + t and d(v0, v4t) = t.

� If 0 ≤ t < m, then d(u0, v4t+1) = 2 + t and d(v0, v4t+1) = 3 + t.

8



� If 0 ≤ t < m, then d(u0, v4t+2) = 3 + t and d(v0, v4t+2) = 4 + t.

� If 0 ≤ t < m, then d(u0, v4t+3) = 3 + t and d(v0, v4t+3) = 4 + t.

� If 1 ≤ t ≤ m, then d(u0, u4t) = 2 + t and d(v0, u4t) = 1 + t.

� If 1 ≤ t < m, then d(u0, u4t+1) = 3 + t and d(v0, u4t+1) = 2 + t.

� If 1 ≤ t < m, then d(u0, u4t+2) = 4 + t and d(v0, u4t+2) = 3 + t.

� If 1 ≤ t < m, then d(u0, u4t+3) = 4 + t and d(v0, u4t+3) = 3 + t.

� d(u0, u1) = 1, d(v0, u1) = 2, d(u0, u2) = 2, d(v0, u2) = 3, d(u0, u3) = 3, and
d(v0, u3) = 3.

Note that u0 ∈ Wu0v0 and v0 ∈ Wv0u0 . Combined with the above discussion we
arrive at |Wu0v0| = 2(3m+2)+ 1 = 6m+5 and |Wv0u0 | = 2(5m− 5)+ 3 = 10m− 7.
Because m ≥ 4, we can conclude that |Wu0v0 | < |Wv0u0|.

The conclusions in the remaining cases are as follows:

� If n = 8m+ 1, where m ≥ 3, then |Wu0v0| = 6m+ 3 and |Wv0u0 | = 10m− 5.

� If n = 8m+ 2, where m ≥ 3, then |Wu0v0| = 6m+ 4 and |Wv0u0 | = 10m− 2.

� If n = 8m+ 3, where m ≥ 3, then |Wu0v0| = 6m+ 5 and |Wv0u0 | = 10m− 1.

� If n = 8m+ 4, where m ≥ 3, then |Wu0v0| = 6m+ 8 and |Wv0u0 | = 10m− 2.

� If n = 8m+ 5, where m ≥ 3, then |Wu0v0| = 6m+ 7 and |Wv0u0 | = 10m+ 1.

� If n = 8m+ 6, where m ≥ 3, then |Wu0v0| = 6m+ 6 and |Wv0u0 | = 10m+ 2.

� If n = 8m+ 7, where m ≥ 3, then |Wu0v0 | = 6m+ 7 and |Wv0u0 | = 10m+ 3.

In each case we have |Wu0v0 | < |Wv0u0|.

Proposition 9. For any n > 24, the generalized Petersen graph GP (n, 4) is not
2-distance-balanced.

Proof. Since dGP (n,4)(u0, v−4) = 2, it su�ces to prove that |Wu0v−4 | < |Wv−4u0|. We
divide the discussion into the eight cases based on n mod 8, and for transparency
and non-replication purposes, present only the �rst case in detail. Details for the
other seven cases are given in [19].

Firstly we consider vertices v−1, v−2, v−3, u−1, u−2, u−3:
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� d(u0, v−1) = 2 and d(v−4, v−1) = 4,

� d(u0, v−2) = 3 and d(v−4, v−2) = 4,

� d(u0, v−3) = d(v−4, v−3) = 3,

� d(u0, u−1) = 1 and d(v−4, u−1) = 3,

� d(u0, u−2) = 2 and d(v−4, u−2) = 3,

� d(u0, u−3) = 3 and d(v−4, u−3) = 2.

Next we consider vertices vi, 0 ≤ i < n − 4, and uj, 1 ≤ j ≤ n − 4. Let n = 8m,
m ≥ 4. Note that n− 4 = 8m− 4 = 4(2m− 1).

� If 0 ≤ t ≤ m− 1, then d(u0, v4t) = d(v8m−4, v4t) = 1 + t.
Ifm ≤ t < 2m−1, then d(v8m−4, v4t) = 2m−t−1 and d(u0, v4t) > d(v8m−4, v4t).

� If 0 ≤ t ≤ m− 1, then d(u0, v4t+1) = 2 + t and d(u0, v4t+1) < d(v8m−4, v4t+1).
If m ≤ t < 2m− 1, then d(u0, v4t+1) = d(v8m−4, v4t+1) = 2m− t+ 2.

� If 0 ≤ t ≤ m− 1, then d(u0, v4t+2) = 3 + t and d(u0, v4t+2) < d(v8m−4, v4t+2).
If m ≤ t < 2m− 1, then d(u0, v4t+2) = d(v8m−4, v4t+2) = 2m− t+ 2.

� If 0 ≤ t ≤ m− 2, then d(u0, v4t+3) = 3 + t and d(u0, v4t+3) < d(v8m−4, v4t+3).
If m− 1 ≤ t < 2m− 1, then d(u0, v4t+3) = d(v8m−4, v4t+3) = 2m− t+ 1.

� If 1 ≤ t ≤ m− 1, then d(u0, u4t) = d(v8m−4, u4t) = 2 + t.
If m ≤ t ≤ 2m− 1, then d(v8m−4, u4t) = 2m− t and d(u0, u4t) > d(v8m−4, u4t).

� If 1 ≤ t ≤ m− 1, then d(u0, u4t+1) = d(v8m−4, u4t+1) = 3 + t.
If m ≤ t < 2m − 1, then d(v8m−4, u4t+1) = 2m − t + 1 and d(u0, u4t+1) >
d(v8m−4, u4t+1).

� If 1 ≤ t ≤ m− 2, then d(u0, u4t+2) = d(v8m−4, u4t+2) = 4 + t.
If m − 1 ≤ t < 2m − 1, then d(v8m−4, u4t+2) = 2m − t + 1 and d(u0, u4t+2) >
d(v8m−4, u4t+2).

� If 1 ≤ t ≤ m− 2, then d(u0, u4t+3) = d(v8m−4, u4t+3) = 4 + t.
If m − 1 ≤ t < 2m − 1, then d(v8m−4, u4t+3) = 2m − t and d(u0, u4t+3) >
d(v8m−4, u4t+3).

� d(u0, u1) = 1, d(v8m−4, u1) = 2m + 1, d(u0, u2) = 2, d(v8m−4, u2) = 2m + 1,
d(u0, u3) = 3, and d(v8m−4, u3) = 2m.
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Note that u0 ∈ Wu0v8m−4 and v8m−4 ∈ Wv8m−4u0 . Combined with the above discussion
we arrive at |Wu0v8m−4| = 3m + 7 and |Wv8m−4u0| = 5m. Because m ≥ 4 we may
conclude that |Wu0v8m−4| < |Wv8m−4u0|.

The conclusions in the remaining cases are as follows:

� If n = 8m+ 1, where m ≥ 3, then |Wu0v−4| = 3m+ 7 and |Wv−4u0| = 5m+ 3.

� If n = 8m+ 2, where m ≥ 3, then |Wu0v−4| = 3m+ 6 and |Wv−4u0| = 5m+ 2.

� If n = 8m+ 3 where m ≥ 3, then |Wu0v−4| = 3m+ 7 and |Wv−4u0| = 5m+ 3.

� If n = 8m+ 4, where m ≥ 3, then |Wu0v−4| = 3m+ 9 and |Wv−4u0| = 5m+ 4.

� If n = 8m+ 5, where m ≥ 3, then |Wu0v−4| = 3m+ 7 and |Wv−4u0| = 5m+ 3.

� If n = 8m+ 6, where m ≥ 3, then |Wu0v−4| = 3m+ 8 and |Wv−4u0| = 5m+ 6.

� If n = 8m+ 7, where m ≥ 3, then |Wu0v−4| = 3m+ 8 and |Wv−4u0| = 5m+ 6.

In each case we have |Wu0v−4| < |Wv−4u0| as required.

Proposition 10. For any n > 24, the generalized Petersen graph GP (n, 4) is not
ℓ-distance-balanced for any 3 ≤ ℓ < diam(GP (n, 4)).

Proof. For a given �xed n, we set D = diam(GP (n, 4)).
For any 3 ≤ ℓ < D, we �rst show that there exists vj such that d(u0, vj) = ℓ

where 8 ≤ j ≤ n/2. From [18] we recall that there exists j∗ such that d(u0, uj∗) = D.
If n = 8m, where m ≥ 4, or n = 8m + 1, where m ≥ 3, then from [18] we know

that j∗ = 4(m− 1) + 2 and D = d(u0, uj∗) = m+ 3. Note that d(u0, v4s+2) = s+ 3,
where 2 ≤ s ≤ m− 1, and d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 2, where m ≥ 3, or n = 8m + 3, where m ≥ 3, then from [18] we
know that j∗ = 4m+ 1 and D = d(u0, uj∗) = m+ 3. Note that d(u0, v4s+1) = s+ 2,
where 3 ≤ s ≤ m, and d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 4, where m ≥ 3, or n = 8m + 5, where m ≥ 3, then from [18] we
know that j∗ = 4m+ 2 and D = d(u0, uj∗) = m+ 4. Note that d(u0, v4s+2) = s+ 3,
where 2 ≤ s ≤ m, and d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 6, where m ≥ 3, then from [18] we know that j∗ = 4m + 3 and
D = d(u0, uj∗) = m + 4. Note that d(u0, v4s+3) = s + 3, where 2 ≤ s ≤ m, and
d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.

If n = 8m + 7, where m ≥ 3, then from [18] we know that j∗ = 4m + 2 and
D = d(u0, uj∗) = m + 4. Note that d(u0, v4s+2) = s + 3, where 2 ≤ s ≤ m, and
d(u0, v4s) = s+ 1, where 2 ≤ s ≤ m.
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By the above discussion, there exists j, where 8 ≤ j ≤ n/2, such that d(u0, vj) =
ℓ for any 3 ≤ ℓ < D. De�ne the following sets of vertices:

V1 = {ui : 1 ≤ i ≤ j − 1} ∪ {vi : 1 ≤ i ≤ j − 1},
V2 = {ui : j + 1 ≤ i ≤ n− 1} ∪ {vi : j + 1 ≤ i ≤ n− 1},

W 1
u0vj

= Wu0vj ∪ (V1 ∪ {u0, v0, uj, vj}),
W 1

vju0
= Wvju0 ∪ (V1 ∪ {u0, v0, uj, vj}),

W 2
u0vj

= Wu0vj ∪ (V2 ∪ {u0, v0, uj, vj}),
W 2

vju0
= Wvju0 ∪ (V2 ∪ {u0, v0, uj, vj}).

Because 8 ≤ j ≤ n/2, we have |W 2
u0vj

| = |W 1
u0vn−j

| and |W 2
vju0

| = |W 1
vn−ju0

|. So

|Wu0vj | = |W 1
u0vj

|+ |W 2
u0vj

| − 2 = |W 1
u0vj

|+ |W 1
u0vn−j

| − 2 and

|Wvju0| = |W 1
vju0

|+ |W 2
vju0

| − 2 = |W 1
vju0

|+ |W 1
vn−ju0

| − 2.

In the following we will compute |W 1
u0vj

| and |W 1
vju0

| where 8 ≤ j ≤ n− 8. The
computation is divided into eight cases, and for transparency and non-replication
purposes, present only the �rst case in detail. Details for the other seven cases are
given in [19].

The computation of |W 1
u0v4s

| and |W 1
v4su0

|, where s ≥ 5 is odd is as follows.

� If 0 ≤ t < s, then d(u0, v4t) = 1 + t and d(v4s, v4t) = s− t.
If 0 ≤ t < s−1

2
, then d(u0, v4t) < d(v4s, v4t).

If s−1
2

< t < s, then d(u0, v4t) > d(v4s, v4t).

� If 0 ≤ t < s, then d(u0, v4t+1) = 2 + t and d(v4s, v4t+1) = s− t+ 3.
If 0 ≤ t < s+1

2
, then d(u0, v4t+1) < d(v4s, v4t+1).

If s+1
2

< t < s, then d(u0, v4t+1) > d(v4s, v4t+1).

� If 0 ≤ t < s, then d(u0, v4t+2) = 3 + t and d(v4s, v4t+2) = s− t+ 3.
If 0 ≤ t ≤ s−1

2
, then d(u0, v4t+2) < d(v4s, v4t+2).

If s+1
2

≤ t < s, then d(u0, v4t+2) > d(v4s, v4t+2).

� If 0 ≤ t < s, then d(u0, v4t+3) = 3 + t and d(v4s, v4t+3) = s− t+ 2.
If 0 ≤ t < s−1

2
, then d(u0, v4t+3) < d(v4s, v4t+3).

If s−1
2

< t < s, then d(u0, v4t+3) > d(v4s, v4t+3).

� If 1 ≤ t ≤ s, then d(u0, u4t) = 2 + t and d(v4s, u4t) = s− t+ 1.
If 1 ≤ t < s−1

2
, then d(u0, u4t) < d(v4s, u4t).

If s−1
2

< t ≤ s, then d(u0, u4t) > d(v4s, u4t).
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� If 1 ≤ t < s, then d(u0, u4t+1) = 3 + t and d(v4s, u4t+1) = s− t+ 2.
If 1 ≤ t < s−1

2
, then d(u0, u4t+1) < d(v4s, u4t+1).

If s−1
2

< t < s, then d(u0, u4t+1) > d(v4s, u4t+1).

� If 1 ≤ t < s, then d(u0, u4t+2) = 4 + t and d(v4s, u4t+2) = s− t+ 2.
If 1 ≤ t ≤ s−3

2
, then d(u0, u4t+2) < d(v4s, u4t+2).

If s−1
2

≤ t < s, then d(u0, u4t+2) > d(v4s, u4t+2).

� If 1 ≤ t < s, then d(u0, u4t+3) = 4 + t and d(v4s, u4t+3) = s− t+ 1.
If 1 ≤ t < s−3

2
, then d(u0, u4t+3) < d(v4s, u4t+3).

If s−3
2

< t < s, then d(u0, u4t+3) > d(v4s, u4t+3).

� d(u0, u1) = 1, d(v4s, u1) = s+2, d(u0, u2) = 2, d(v4s, u2) = s+2, d(u0, u3) = 3,
and d(v4s, u3) = s+ 1.

Note that u0 ∈ W 1
u0v4s

and v4s ∈ W 1
v4su0

. Combined with the above discussion we
arrive at |W 1

u0v4s
| = 4s− 3 and |W 1

v4su0
| = 4s− 1.

The conclusions in the remaining cases are as follows:

� If s ≥ 4 and s is even, then |W 1
u0v4s

| = 4s− 1 and |W 1
v4su0

| = 4s+ 1.

� If s ≥ 3 and s is odd, then |W 1
u0v4s+1

| = 4s+ 1 and |W 1
v4s+1u0

| = 4s+ 3.

� If s ≥ 4 and s is even, then |W 1
u0v4s+1

| = 4s− 3 and |W 1
v4s+1u0

| = 4s− 1.

� If s ≥ 5 and s is odd, then |W 1
u0v4s+2

| = 4s− 1 and |W 1
v4s+2u0

| = 4s+ 1.

� If s ≥ 4 and s is even, then |W 1
u0v4s+2

| = 4s+ 1 and |W 1
v4s+2u0

| = 4s+ 3.

� If s ≥ 5 and s is odd, then |W 1
u0v4s+3

| = 4s+ 1 and |W 1
v4s+3u0

| = 4s+ 3.

� If s ≥ 4 and s is even, then |W 1
u0v4s+3

| = 4s+ 1 and |W 1
v4s+3u0

| = 4s+ 3.

� |W 1
u0v8

| = 8 and |W 1
v8u0

| = 8.

� |W 1
u0v10

| = 11 and |W 1
v10u0

| = 10.

� |W 1
u0v11

| = 10 and |W 1
v11u0

| = 10.

� |W 1
u0v12

| = 10 and |W 1
v12u0

| = 11.

� |W 1
u0v14

| = 12 and |W 1
v14u0

| = 13.

� |W 1
u0v15

| = 14 and |W 1
v15u0

| = 15.
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When n ≥ 26, from the above computation of |W 1
u0vj

| and |W 1
vju0

|, where 8 ≤
j ≤ n − 8, for any 3 ≤ ℓ < D we know that there exists j where d(u0, vj) = ℓ and
8 ≤ j ≤ n/2 such that |Wu0vj | < |Wvju0 |. When n = 25, we have d(u0, v8) = 3,
d(u0, v12) = 4, d(u0, v11) = 5, and D(GP (25, 4)) = 6. From the above computation
of |W 1

u0vj
| and |W 1

vju0
|, we know that |Wu0vj | < |Wvju0| for any j ∈ {8, 11, 12}.

4 Concluding remarks

In this paper, we prove that GP (n, 3) is not ℓ-distance-balanced for n > 16 and
1 ≤ ℓ < diam(GP (n, 3)). We also prove that GP (n, 4) is not ℓ-distance-balanced
for n > 24 and 1 ≤ ℓ < diam(GP (n, 4)). Earlier it was proved in [21] that GP (n, 2)
is not ℓ-distance-balanced for n > 11 and 1 ≤ ℓ < diam(GP (n, 2)). As already
mentioned, to investigate Conjecture 2 for k ≥ 5, most likely a new approach is
needed.

Having in mind Theorem 1, Conjecture 2, and the two main results of this paper,
we propose the following problem.

Problem 11. (1) Let k ≥ 5 be odd and let k(k+1)
2

≤ n ≤ (k + 1)2. Determine
whether GP (n, k) is ℓ-distance-balanced for 1 ≤ ℓ < diam(GP (n, k)).

(2) Let k ≥ 6 be even and let k2

2
≤ n ≤ k(k + 2). Determine whether GP (n, k)

is ℓ-distance-balanced for 1 ≤ ℓ < diam(GP (n, k)).
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